Audytor SET

有循环的冷热水装置和中央供暖和冷却装置的设计程序。

Audytor SET程序,以及公司在其基础上创建的定制版本(包含您的分类产品),将允许向许多潜在的用户提供关于公司及其产品的信息。

 

Audytor SET

The Audytor SET program combines calculations of cold and hot water installation with circulation and central heating and cooling installations in one project.

New features and improvements introduced in version 7.2

  • extension of the floor heating design module,
  • a new two-dimensional graphics module ensuring better ergonomics and higher readability and speed of displaying graphics,
  • extending the range of mixing group schemes,
  • improvements in the DWG module,
  • shorter opening time of the project,
  • extension of Excel export with the ability to simultaneously save all tables,
  • other new features.

Program modules

The Audytor SET consists of the following modules:

Module of cold and hot water installation with circulation.

More about the program

Module of central heating installation, including underfloor heating.

More about the program

Module of central cooling installation.

More about the program

 

  • Individual modules cooperate with each other and use a common 2D and 3D graphic environment.
  • The modules can also work indepedently if it is necessary to design only one system of installation.
  • Each module is activated by a separate license key,
  • License keys run individual modules in the Basic or Pro version.
  • It is possible to run the program using a trial license.

The program since version 7.1 has a mechanism that automatically generates the axonometric scheme of the designed installation.

Axonometry drawing can be printed or exported to DWG format, which allows to create a complete project documentation.

The axonometry schema also allows displaying the scheme of the entire installation in one drawing allowing for a more precise orientation in the project and selecting and simultaneously editing the element data on different floors, which significantly speeds up the procedure of design modification and installation adjustment.

Function of quick calculation of underfloor radiators

This function makes it possible to perform calculations for a group of underfloor radiators during the design process, before the complete calculation of the installation. Thanks to this, it is possible to quickly test the response of the calculation results to individual data (e.g. supply temperature, heating floor structure, diameter of the pipes, spacing of pipes, division into several circuits, etc.).

The function of quick selection of underfloor radiators allows to determine:

  • possible supply temperature range for individual radiators 
  • maximum supply temperature for the indicated group of radiators 
  • proposed division of coils in order to meet the criteria of maximum hydraulic resistance and maximum length   
  • proposed division of coils in order to reduce the differences in resistance between coils and to facilitate hydraulic balancing of the installation.

Import of building bases in PDF format

The Audytor program has long been able to import drawings in many popular formats. DWG and DXF formats are particularly suitable for technical drawings. However, in market practice, a large part of the documentation is provided in PDF files. Although it is a general format and not addressed to technical drawings, due to frequent use, the Audytor SET software has the option of importing drawings also in this format.

 

Drawing of underfloor heating coils

The program has expanded the possibilities of automatic drawing of floor heating coils. Currently, the user can choose one of the following ways to create a given coil:

  • spiral with clockwise direction
  • spiral with counter-clockwise direction
  • meander coil.

Besides, the user can edit (correct) the coil shape created by the program.

New graphic design of the Audytor SET program

The graphic design has been changed in the program - both in terms of the graphic style and window organization. Thanks to this, they have become even more transparent 

Mechanism for determining the effective heating surface of floor heaters

The automatic coil pipe generation mechanism has been extended with a function that allows determining the effective heating surface of a floor heater. The coil system can occupy the surface of the entire heater or "bypass" the manifold and connecting pipes of other heaters. It is also possible to designate zones to turn off part of the heating zone without having to change the shape of the heater itself.

Dividing and joining heating zones, rooms and polygons

Tools for quickly dividing and connecting polygons that define hotplates. One field can be divided into two or three equal fields - horizontally or vertically, respectively. The user can also indicate a dividing line using a broken line. At the same time, the option of combining several cooking zones into one has been introduced.

These functions are especially useful when designing underfloor heating, but can be used for sharing
and joining other polygons (e.g. room zones).

 

Selection of coil drawing direction

The program allows you to choose the direction of drawing the spiral coil clockwise or counterclockwise.

Choice of pipe laying method in concave corners

Depending on the shape of the room and the assumed coil pipe laying system, it is possible to impose a way of drawing pipes "bypassing" concave corners.

Auxiliary lines for manual drawing of the coil

If the automatic coil generated option is switched off, the program displays auxiliary lines supporting manual drawing of lines. The lines are drawn with a given spacing taking into account the spacing in the peripheral zone.

Insert a heating zone around the cursor

The function of automatic insertion of a heating zone in the room zone (so-called insertion around the cursor).

Showing unconnected heating zones

The heating zones before connecting to the pipes are displayed in less intense colors, thanks to which it is very easy to know which fields still need to be connected.

Extending the range of mixing group schemes

Extended range of mixing group schemes with the possibility of local mixing at the manifold.

Drawing in drawing

It is possible to insert a fragment of another drawing in the drawing. This significantly increases the possibility of creating clear technical documentation.

Inserting a fragment of a DWG drawing

The ability to easily use one DWG file containing architectural plans of many floors.

The user can indicate which parts of the DWG file are to be used on each floor and then adjust their position using precision panning tools.

Coloring the walls

Display of walls with filling - gray for external walls and yellow for internal walls. This improves the readability of created drawings.

Selection in color

When selecting objects using the window, the selection window is filled with blue, which improves its readability.

Readability of selected objects has also been increased by displaying them with all details in green.

Selective selection

The selective selection function allows you to indicate what elements of the drawings are to be marked (e.g. rooms, pipes, fittings, etc.).

This function is useful when, for example, the user would like to duplicate selected elements from the indicated area to the next floor.

Narrow the range of selected objects in the tables

The functions Leave selected lines and Leave unselected lines allow you to narrow the range of selected objects. After selecting a number of elements in the drawing window, you can then remove from the selection the items indicated in the table or just leave those items.

Precise moving of objects

This function enables precise moving of objects. The user defines the displacement vector, i.e. specifies the start and end points.

This function, combined with the Magnifier tool, enables very precise moving of objects. It is very useful, in the case of matching architectural objects on different floors. Just enable the display of the previous floor and then indicate the corresponding points on the architectural plans of two floors.

Improved critical flow display

When you turn on critical flow display, the other elements of the drawings are displayed less intensively. This makes it even easier to orient yourself in the course of critical circulation.

Drawing adjacent floors

Expanding the possibilities of displaying (drawing) the previous floor.

Currently, elements of the previous storey or the next storey can be displayed, or both. This facilitates adjusting architectural projection positions and location of installation risers.

Temporarily turn off of the label display

The option of temporarily turning off the display of labels during design, improves the readability of drawings on the screen in situations where labels are not necessary.

Adjusting wall thickness

This option allows you to change the thickness of the walls when drawing them:
– CTRL + left square bracket - reducing the wall thickness,
– CTRL + right square bracket - increasing wall thickness.

The same effect can be achieved by pressing the CTRL key while holding the mouse wheel. This function allows easy adjustment of the wall thickness to the loaded building foundation (planview).

Export extension to Excel

The ability to export to Microsoft Excel not only individual tables, but also all tables and diagnostics at once. This significantly reduces exporting time if you need to save a number of tables.

Import and export of drawings in DWG 2018 format

The program has been equipped with the latest cooperation module with DWG and DXF files.

It allows among others:

  • Loading DXF and DWG drawings in the newest versions (until 2018).
  • UNICODE text support for most characters to be displayed correctly.
  • Export of drawings in the following formats: DWG 2000, DWG 2004, DWG 2010, DXF 2000, DXF 2004, DXF 2007, PDF, SVG, CGM, HPHL, SWF.
  • Significantly faster display of complex drawings thanks to the simplified paint function.
  • A more realistic export of drawings to DXF and DWG files.
  • Saving raster drawings in DXF and DWG files.
  • More convenient management of drawing layers

Import of building bases from Autodesk® Revit®

The function allows to create layout of corresponding to the levels on which rooms have been defined in Autodesk® Revit®. The transfer of data takes place via a file generated in Autodesk® Revit® using the Audytor gbXML plugin.

Read more

将安装导出到 Autodesk Revit

设计的安装可以很容易地与选定管道和设备的技术数据一起导出到revit程序中:直径、设置、散热器尺寸和物理量:介质速度、加热器功率、压力损失等。

 

Export of the installation project to Autodesk® Revit®

The function allows you to export the installation project to a file that can later be loaded into Autodesk® Revit® using the Audytor SET plugin for Revit.

The function allows you to export from the data and export from the results. Export from data allows you to save even an incomplete installation project (not recalculating), for example, the arrangement of the water risers, or the layout of the radiators. Export from results allows us to use technical data of selected pipes and devices in Autodesk® Revit®, eg pipe diameters, valve settings, radiator sizes, and pipe spacing in underfloor heating. In addition, physical quantities are available, such as the medium speed, the power of the radiator, and pressure losses.

Read more

  7.2 Pro 7.2 Basic 7.1 Pro 7.1 Basic 365 Pro 365 Basic
Audytor SET
Function of quick calculation of underfloor radiators
Import of building bases in PDF format
Drawing of underfloor heating coils
New graphic design of the Audytor SET program
Mechanism for determining the effective heating surface of floor heaters
Dividing and joining heating zones, rooms and polygons
Selection of coil drawing direction
Choice of pipe laying method in concave corners
Auxiliary lines for manual drawing of the coil
Insert a heating zone around the cursor
Showing unconnected heating zones
Extending the range of mixing group schemes
Drawing in drawing
Inserting a fragment of a DWG drawing
Coloring the walls
Selection in color
Selective selection
Narrow the range of selected objects in the tables
Precise moving of objects
Improved critical flow display
Drawing adjacent floors
Temporarily turn off of the label display
Adjusting wall thickness
Export extension to Excel
Display of system pipes with actual diameters
Intelligent duplication of system components - "down".
A system of editable keyboard shortcuts
The function of organizing labels on several floors at the same time
Import and export of drawings in DWG 2018 format
Import of building bases from Autodesk® Revit®
将安装导出到 Autodesk Revit
The ability to check the correctness of the floors layout
Creating a list of fittings
Adjustment of existing installations
Designing new installations
Designing a traditional two-pipe installation
基于平面图形进行设计
基于改进图形进行设计
Loading of building bases with the results of heat load from the Audytor HL program
Loading the list of rooms with the results of the heat load from the Audytor HL software
绘制筑基(墙壁、门、窗)
基于计划视图自动创建提升板的扩展
Determining the design water flows in the pipes
Selection of pipe diameters
Determining the hydraulic resistance of individual elements of the installation
Determining the required available pressure
Regulation of water flows in the DHW circulation network by selecting appropriate control elements (valves with pre-settings, orifices, thermostatic valves)
关键电路的可视化
Calculation of the required water flow in the DHW circulation network by the thermal method consisting in determining the cooling of hot water in individual areas
Selection of thermal insulation for pipes
Selection of temperature settings of thermostatic valves, taking into account the water cooling in the circulation pipes
指引显示特征点
绘制部分的电线(供给-反馈)
Drawing lines in pairs (CW - HW)
用折线绘制电线
在窗口(户?)下自动插入散热器
Automatic connection of radiators to distribution pipes
散热器与配线自动连接
Bonding and scaling drawings
图形编辑器
部分的图纸可以复制到后续楼层
系统默认数据继承
创建图形各部分的镜像
典型零件的即时安装
Backup system of data files
允许创建自己的模块
品类丰富的设备
表格中广泛的编辑功能
表格中查找和替换功能
地下供暖系统的选择
Automatic drawing of the underfloor heating coil
误差诊断
三D视图
大规模错误诊断
Automatic axonometry of the installation
设定所有类型设备的默认数据
在表格中生成所选设备的图片以及提示
The function of organizing zones of risers on the diagrams
把地板加热器之间连接的热增益作为散热器能进行计算
选择安装电线的直径
选择散热器(目录55 000)
选择配件
提供系统中的总压力损失
通过选择阀门的预设参数或者节流孔的法兰蓝减少线路的压力(压强)
调整压力和流量调节器的预设
选择一组泵
选择一个泵
允许使用双歧管

New program features 7.0 Pro

  • Possibility to import building bases from Autodesk® Revit® via a gbXML file, 
  • Possibility to export data about the designed installation to Autodesk® Revit®..

Graphic editor

A drawing with marked room zones is necessary to create a project. They can be drawn manually in the program or loaded together with bases from the HL program. If a three-dimensional model of a building has been created in the HL program, the drawings with the results will be loaded into the program. The building entered in tabular form will be loaded as a list of rooms with the results.

 

The most comfortable mode of operation allows you to take full advantage of the possibilities of cooperation with the HL program:

  1. Uploading building bases to the HL program from files such as DWG, DXF, WMF, JPG.
  2. Drawing a building model in the HL program and making thermal calculations.
  3. Loading the results from the HL program in the system design program (heat load values and floor plans)
  4. Drawing the installation and making calculations.

Designing an installation can be carried out only on a diagram, only on plan views, or partially on plan views and partially on a diagrams. It is also possible to combine fragments of installations drawn on plan views with elements drawn on diagrams.

In the case of drawing onplan views, the program automatically creates a simple diagram of risers, "fastening" individual projections. The program (Audytor CH from version 6.0, Audytor CC and Audytor H2O from version 7.0) has been equipped with a three-dimensional visualization module of the installation, analogous to the building visualization module, available in the Audytor HL program, starting from version 6.0.

Default data inheritance system

A significant part of the parameters introduced at the beginning of defining the building are typical data for the entire building (the so-called default data). When entering general data, the user can define for each device default catalog symbol. This symbol is automatically assigned to each device in the drawing. The previously defined default catalog symbol can be changed at any time, also after inserting the device into the drawing. Changing the symbol of a device in the general data will change the symbols of all devices of a given type, unless the symbol has been “firmly” entered for a given device.

The data is edited in the table, which allows you to specify parameters for many drawing elements simultaneously. Linking the drawing to the table makes the element edited in the table highlighted in the diagram.

The data inheritance system allows you to:

  • significant time savings at the data entry stage (without the need to repeatedly enter repeated data),
  • very quick change of data in case of a change in design assumptions or creating variant projects.

 

New program features Audytor 7.1

  • Import and export of drawings in DWG 2018 format
  • The function of organizing the zones of risers in the development
  • Data file backup system
  • A mechanism that automatically generates an axonometric scheme of the designed installation
  • Ability to display installation pipes with actual diameters
  • Mechanism of intelligent duplication of installation elements
  • The function of arranging labels on several storeys at the same time (in plan views and axonometry drawings) and a mechanism for duplicating labels on adjacent storeys
  • Improving the drawing of sewage installations.
  • A system of keyboard shortcuts to assign simple button combinations to the most used drawing tools.
  • Improvements in editing drawing layer properties.
  • Improvements in displaying information about the circulation by a given heater / receiver.  

Data entry

Data can be entered to the program graphically on plan views or diagrams. The necessary information about the drawn elements are introduced into the tables associated with the plan views or diagrams. As a result of table approach, it is possible to edit quickly data related to single pipes, radiators, fittings, as well as whole selected groups of elements. Each component of the system is equipped with the validation and support system that allows to obtain information about the quantity being inputted or the relevant catalogue data.

In order to facilitate data entry, the software includes:

  • The ability to edit simultaneously many system components.
  • The possibility of using ready-made blocks.
  • Intelligent functions duplicating any parts of a drawing horizontally and vertically, together with the appropriate renumbering of elements.
  • Possibility to define an unlimited number of custom blocks consisting of any parts of the drawing.
  • Quick access to auxiliary information on the quantities being inputted.
  • The pop-up buttons facilitating access to frequently used components.
  • Function dynamically linking data from a drawing with the data in the table.
  • Functions connecting automatically fittings, radiators and other system components by pipes.
  • Automatic creation of the risers on the basis of plan views.
  • Editing data in tabular form giving the possibility of setting of parameters of multiple selected items at the same time.
  • Dynamic linkage between the drawing data table highlights in the drawing, the element being edited in the table.

Data diagnostic system

  • Each inputted component is equipped with the validation and support system that allows to obtain information about the values or evokes the relevant catalogue, as well as test of data.

  • While entering data the program checks its correctness on an ongoing basis. This allows a significant reduction in the number of errors. During the calculation process, complete data validation takes place. As the result of that the list of errors, warnings and hints is created. The list includes the information about the significance levels and the place of the problems.

  • After the calculations, program analyses the obtained results. The analogue list of messages is created. Extensive system diagnostics enables the designer to fully assess the quality of the design. The program is equipped with a mechanism for quick search of where the error occurred (automatic finding a table, a row and a column with wrong data and faulty component is indicated in the drawing).

Building underlays

The program enables creation of the complete graphic documentation of the system design, thanks to the possibility of displaying the calculations results on the storey plan views. It is often required to enter the picture of the project under design. Pictures can be entered by reading pictures from a file, scanning or pasting from clipboard. After being entered, pictures frequently require levelling, calibrating, cropping and additional correction.

Technical drawings (eg. underlays) are now as a default created using computers. They are then available in the electronic format as files. Vector formats (eg. DWG, DXF, WMF, EMF) are the most suitable for technical drawings. Picture files can also be created as scans, then they are almost always available in the raster format (BMP, JPG, JPEG, TIF, TIFF, GIF, ICO, PNG).

Usually, while loading the picture, it will be necessary to complete information from the dialogue Picture units. After the picture has been inserted into the program it is usually necessary to perform its levelling and cropping, also the calibration might prove necessary to adjust the picture to its electronic equivalent. It is possible to choose the resolution and quality of the scan and to save scanned documents in a selected graphical format. The program is equipped with scanners compatible with the TWAIN specification.

Bonding and scaling drawings

HL programs (from version 6.0), and CH (from 4.0) are equipped with the function of Graphic creation of a building model. This function gives you the opportunity to draw a building model. To simplify the action of drawing, you can load a drawing base into the program. The file being loaded can come from an external program for creating technical drawings (eg DWG), or from a scanned drawing (eg JPG). The scanned drawing can be divided into several files. Drawings scanned into several files usually do not keep the scale precisely enough. They can also be rotated relative to each other by a small number of degrees.

Drawing bonding allows you to quickly scale multiple scanned drawings (in different sizes and rotated) and bond them with one another.

系统默认数据继承

A significant part of the parameters entered at the beginning of the building defining is data typical for the whole building (i.e. the default data). This data is used by the system of data inheritance.

The user can define for each class of device among others default catalogue symbol. The symbol is automatically assigned (inherited) to each device placed in the design. The default catalogue symbol can be changed at any time, even after inserting devices to the drawing. Change of the symbol in global data will change the symbols of all devices of that type, unless for a given element was another symbol was entered individually. Many other parameters may be inherited in the analogue way.

The data is edited in the table which allows the simultaneous determination of parameters for multiple elements. Linkage between the drawing and the table highlights in the drawing the element edited in the table.

Data inheritance system allows you to:

  • significant time savings on data entry stage (eliminates the need for entering of repetitive data many times)
  • very quick change of repetitive data in case of changes of design assumptions or preparing variant designs.

Backup system of data files

The program has a mechanism that automatically creates a set of project backups (up to 8 files).

Data files are backed up every time data is saved, with the new files overwriting the older files so that at least one copy of the file from each stage of the project work is always kept.

This function will allow you to recover the project file even if its last versions are overwritten or damaged.

品类丰富的设备

软件中包括了设备的目录,技术文件和图片

Extensive range of equipment

The software includes catalogues of equipment together with their technical documentation and pictures.

辅助绘图

绘图复制工具,套管绘图工具,散热器的自动输入和链接,自动设计地下散热器并准备好封锁供暖系统中的典型碎片---所有这些功能都能更有效地协助设计师使用软件,甚至于扩大供暖系统的规模。

Assisted drawing

Drawing aid, tool for drawing double pipes, automatic entering and linking of radiators, automatic creation of underfloor radiators and ready blocks of typical fragments of heating systems – all these functionalities assist designers in effective work in the software, even on extended heating systems.

地下供暖系统的选择

针对选择地下供暖系统的扩展工具可以帮助用户设计需要的地暖散热器组件并准备必要的技术文件

Selection of underfloor heating

The extended tool for selection of underfloor heating assists users in designing all required components of underfloor radiators and prepare necessary technical documentation.

Automatic drawing of the underfloor heating coil

The program is equipped with the function of automatic drawing of a heating pipe routing scheme in a spiral system.

Coils are created in all floor heaters on floor plans, taking into account the spacing of supply and return pipes as well as the indicated spacing between the pipes wherever possible, both in the basic zone and in edge zones.

The program also performs precise calculations of the generated coil length.

误差诊断

扩展误差诊断以及供暖系统和电路的三维可视化可以帮助设计师更容易的在项目中识别错误和优化系统

Diagnostics of errors

Extended diagnostics, as well as 3D visualisation of heating systems and critical circuits assist designers in easy identification of errors and optimization of systems in their projects.

三D视图

3D visualization

Automatic axonometry of the installation

The program since version 7.1 has a mechanism that automatically generates the axonometric scheme of the designed installation.

Axonometry drawing can be printed or exported to DWG format, which allows to create a complete project documentation.

The axonometry schema also allows displaying the scheme of the entire installation in one drawing allowing for a more precise orientation in the project and selecting and simultaneously editing the element data on different floors, which significantly speeds up the procedure of design modification and installation adjustment.

The function of organizing zones of risers on the diagrams

In the drawing of the automatically created installation diagrams, the Organize button that has been added, enables the intelligent positioning of the zones of risers based on the data from the storey's plan views.

The program maintains the order of the risers within individual installation systems (CH, CC and H2O).

The function is particularly useful for large projects, significantly reducing the time needed to manually move the risers' zones.

The parameters of the organizing function can be modified.

Checking data and calculation results

Each inputted component is equipped with the validation and support system that allows to obtain information about the values or evokes the relevant catalogue, as well as test of data.

While entering data the program checks its correctness on an ongoing basis. This allows a significant reduction in the number of errors. During the calculation process, complete data validation takes place. As the result of that the list of errors, warnings and hints is created. The list includes the information about the significance levels and the place of the problems.

After the calculations, program analyses the obtained results. The analogue list of messages is created. Extensive system diagnostics enables the designer to fully assess the quality of the design. The program is equipped with a mechanism for quick search of where the error occurred (automatic finding a table, a row and a column with wrong data and faulty component is indicated in the drawing).

Results of calculations

The results of calculation are presented in both graphical and tabular form. Format individual system component labels can be freely modified (the selection of displayed values and style of labels).

The format of tables can be changed (selection of displayed columns and rows, font sizes) and sorted according to any key. 
The tables contain the overall results and detailed results for individual devices, circuits and lists of materials and fittings. 
In the drawings with results, there are labels containing the data specific for the indicated device. The form of labels is fully editable. All results available for the specific element can be put on the label. Many formats of labels can be saved and later on changed immediately.

The calculation results can be printed on a plotter or a printer. The user can select the scale of drawing and use the print preview to determine how drawings will be printed.

If the drawing does not fit one sheet of paper, the program prints it in fragments, which then can be taped together. As a result, using even the simplest A4 printer, large drawings may be prepared. The program is also capable of storing drawings in DXF or DWG files. The saved drawings can then be loaded into other software, e.g. AutoCAD.

Tables with calculation results can be printed, or exported to other applications running in Windows environment (e.g. a spreadsheet, a word processor etc.).

舒适的设计

设计师可以直接通过由Audytor OZC软件输入的有关墙,窗户和房间的信息来设计供暖系统

Comfortable design in plan views

Designers can draw heating systems using information about walls, windows and rooms, imported directly from Audytor OZC software, or drawn in Audytor C.O. software.

快速的数据输入和编辑

数据的继承和默认,以及变量的应用使供暖系统的数据输入变得更快,更灵活。所有设备甚至于供暖系统中的全部配件的参数都储存在表格中,这让它能更快更容易的被修改

Fast data input and edition

The concepts of data inheritance and default data, as well as application of variables make the process of entering data on heating systems fast and flexible. Parameters of equipment are stored in tables, that enable easy and fast modification of one, several, or even all components of heating systems.

在一个项目中设计几个设备

在一个项目中设计多个系统的能力能确保在同一时间为建筑物设计整个系统。

Designing a several installations in one project

The ability to design several systems in one project in order to design the entire system for the building at the same time.

更快的安装设计

该程序允许同时输入和修改供水、加热和冷却装置,这大大改善了设计过程。

 

Faster installation designing

The program allows simultaneous input and modification of water supply, heating and cooling installations, which significantly improves the design process.

无限制大小的安装

程序Audytor H2O能够设计非常大的供水系统(甚至数千个附件和抽水点)

Unlimited size of the installation

Program Audytor H2O enables to design very large water supply systems (even thousands of accessories and draw-off points).

可能发生的安装碰撞的简单分析

三个装置的通用三维模型有助于分析项目中发生的安装冲突。

 

Simple analysis of possible installation collisions

A common 3D model of all three installations facilitates the analysis of installation collisions occurring in the project.

一个项目中有多个系统

设计师可以在一个项目或一幅图中设计多种供暖系统,单独的供暖系统可以甚至包括上千种散热器组件

Many systems in one project

Designers can create many heating systems in one project, or even in a single drawing. Heating systems alone can include even several thousands of radiator components.

大型设备的高效系统

专有的(图形引擎)可以设计包含数千个项目、接收器和水龙头的超大装置。

 

An efficient system for large installations

The proprietary (graphic engine enables the design of very large installations containing even several thousand items, receivers and taps.

计算

软件可以选择管道的直径和保温性,配件的预设,散热器的尺寸,低损耗的汇合口,热缓冲区,泵,泵组和其他很多供暖系统的组件

Calculations

The software selects diameters of pipes and insulation of pipes, presets of accessories, dimensions of radiators, flat stations, low loss headers, heat buffers, pumps, pump groups and many other components of heating systems.

高效快速的计算过程

程序配备了高效的图表安装分析算法和选择管道、配件和附件的高效算法,允许在不到几秒钟内计算大型安装。

Efficient and fast calculation process

Program is equipped with a highly efficient analysis algorithm of graph installations and efficient algorithms of selection of pipes, fittings and accessories, which allow to calculate large installations in in less than a few seconds.

自由查看卫生项目

无许可证密钥的程序可用于查看和打印项目以及查看安装元素选择的结果。

 

Free viewer for sanitary projects

The program without license keys can be used for viewing and printing projects and viewing the results of the selection of installation elements.

创建技术文件

设计师可以使用标签编辑器为准备项目的技术文件对使用的材料和供暖系统组件进行概述

Creating technical documentation

Designers can use the editor of labels, creating overview of materials and components of heating systems in order to prepare technical documentation of projects. Diagrams of heating systems can be divided into any number of drawings. Drawings themselves can be exported into the DWG format.

最低配置 / Technical requirements

该软件可以在windows(Vista, 7, 8, 8.1, 10)以上的32或则64位系统上运行。

最低硬件要求:

  • 1200 MHz处理器 
  • 1 GB RAM 
  • 最小屏幕分辨率为1024x768的彩色显示器 
  • 硬盘驱动器上的可用空间大于500MB 
  • 兼容的显卡采用OpenGL 2.0及更高版本 , 市场上的所有新显卡都可以满足最低硬件要求;集成显卡和主板:最低GMA500

Hardware requirements for the 3D editor

Vertical resolution requirements for the screen: 
- minimum - 768 points, 
- sufficient for comfortable work - 900 points, 
- the most convenient - 1080 points. 

Requirements for system font settings: 
- Windows Vista, 7, 8 - fonts "100% smaller", 
- Windows XP - "normal" fonts. 

The computer should have a graphics card that supports OpenGL technology in the version: 
- minimum 2.0, 
- sufficient for comfortable work: 3.3 and higher.


How can I check which graphics card model is on my computer? 
- Windows Vista, 7, 8: Control Panel/System/Device Manager/Graphics Cards, 
- Windows XP: Control Panel/System/Hardware/Device Manager/Graphics Cards.

Not recommended graphics cards that do not support OpenGL 2.0 (according to the manufacturer's data), on which the 3D editor will not work:

 

ATI/AMD: 
- ATI Rage 
- Original "ATI Radeon", jak i Radeon DDR, Radeon 7000, Radeon VE, LE, 
- Mobility Radeon 7500, 9000 
- Radeon 8500, 9000, 9200 and 9250. 

Nvidia: 
- Riva, Riva TNT 1 i 2, Vanta, 
- GeForce256, GeForce2, GeForce3, GeForce4, GeForce FX 
- Quadro 
- Quadro NVS (50, 100, 200, 210S, 280) 

Intel: 
- Intel740 
- Extreme Graphics (1-2) 
- GMA 900, 950 
- GMA 3100, GMA 3150 
- HD Graphics (Rok 2010) 
- HD Graphics (CPU Sandy Bridge) (Rok 2011) 
- HD Graphics 2000 
- HD Graphics 2500 
- HD Graphics 3000 
- HD Graphics P3000 
and most of the integrated ones

OpenGL 2.0 support cards (sufficient

ATI/AMD: 
- Mobility Radeon 9600, 9700 
- Radeon X300, X550, X600 
- Radeon X700–X850. 
- Radeon X1300–X1950 

Nvidia: 
- GeForce 6 (GeForce 6xxx) 
- GeForce 7 (GeForce 7xxx) 
- Quadro FX Series 
- Quadro FX (x300) Series 
- Quadro FX (x400) Series 
- Quadro FX (x500) Series 
- Quadro NVS 285 

Intel: 
- GMA 500 
- GMA 600 
- GMA 3000 
- GMA 3600 
- GMA 3650 
- GMA X3000 - X3500 
- GMA 4500 
- GMA X4500 
- GMA X4500HD 
- GMA 4500MHD


OpenGL 3.3 support cards (recommended)

ATI/AMD: 
- Radeon HD 2000 series. 
- Radeon HD 3450-3650, Radeon Mobility HD 2000 and 3000 series. 
- Radeon HD 3690-3870. 
- Radeon HD 4000 series. 
- FireStream 

Nvidia: 
- GeForce 8 (GeForce 8xxx) 
- GeForce 9 (GeForce 9xxx) 
- GeForce 100 Series 
- GeForce 200 Series 
- GeForce 300 Series 
- Quadro FX (x600) Series 
- Quadro FX (x700) Series 
- Quadro FX (x800) Series 
- Quadro NVS (290 - 300) 

Intel: 
- HD Graphics 4000 
- HD Graphics P4000 
- HD Graphics 4200 
- HD Graphics 4400 
- HD Graphics 4600 
- HD Graphics 5000 
- Iris Graphics 5100 
- Iris Pro Graphics 5200 

OpenGl 4.2 
- FirePro Workstation 
- FirePro Server 

OpenGl 4.3 and higher
ATI/AMD: 
- Radeon HD 5000 series 
- Radeon HD 6000 series 
- Radeon HD 7000 series 
- Radeon HD 8000 series 
- Radeon HD 9000 series 

Nvidia: 
- GeForce 400 Series 
- GeForce 500 Series 
- GeForce 600 Series 
- GeForce 700 Series 
- Quadro x000 
- Quadro Kxxx Series 
- Quadro NVS (310 - 510)

 

Wikipedia source:

Cards with AMD Chipsets

Cards with Intel Chipsets

Cards with nVidia Chipsets

 

 

 

Copyright © 2020 by SANKOM